Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(20): e117, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33051689

RESUMO

Here, we characterized a flap endonuclease 1 (FEN1) plus hairpin DNA probe (hpDNA) system, designated the HpSGN system, for both DNA and RNA editing without sequence limitation. The compact size of the HpSGN system make it an ideal candidate for in vivo delivery applications. In vitro biochemical studies showed that the HpSGN system required less nuclease to cleave ssDNA substrates than the SGN system we reported previously by a factor of ∼40. Also, we proved that the HpSGN system can efficiently cleave different RNA targets in vitro. The HpSGN system cleaved genomic DNA at an efficiency of ∼40% and ∼20% in bacterial and human cells, respectively, and knocked down specific mRNAs in human cells at a level of ∼25%. Furthermore, the HpSGN system was sensitive to the single base mismatch at the position next to the hairpin both in vitro and in vivo. Collectively, this study demonstrated the potential of developing the HpSGN system as a small, effective, and specific editing tool for manipulating both DNA and RNA without sequence limitation.


Assuntos
Archaeoglobus fulgidus/enzimologia , Endonucleases Flap/metabolismo , Edição de Genes/métodos , Sequências Repetidas Invertidas , Edição de RNA , Archaeoglobus fulgidus/genética , Pareamento Incorreto de Bases , DNA/química , Sondas de DNA/química , Sondas de DNA/genética , DNA de Cadeia Simples , Escherichia coli/genética , Endonucleases Flap/química , Endonucleases Flap/genética , Endonucleases Flap/isolamento & purificação , Células HEK293 , Humanos , Técnicas In Vitro , Conformação de Ácido Nucleico , RNA/química , Especificidade por Substrato
2.
J Chromatogr A ; 1621: 461051, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32268955

RESUMO

The strength of the biotin/avidin interaction makes it an ideal tool for the purification of biotin-labeled proteins via avidin-coupled resin with high specificity and selectivity. Nevertheless, this tight binding comes at an extra cost of performing the elution step under denaturing conditions. Weakening the biotin/avidin interaction improves the elution conditions, but only to mild or harsh denaturing buffers with the drawback of reducing the specificity and selectivity of this interaction. Here, we present two chromatographic protein purification schemes that are well-suited for application under native conditions thus preserving the strength of the biotin/avidin interaction. In the first scheme, we introduce a biotin-labeled SUMO-tag to each of human flap endonuclease 1 and Escherichia coli replication termination protein Tus, and elute both proteins by performing on-resin cleavage using SUMO protease. In the second scheme, we immobilize biotin-labeled human proliferating cell nuclear antigen (PCNA) on the avidin-coupled resin and use the resulting resin as a tag-free affinity method to purify the PCNA-binding protein human DNA Ligase 1. Furthermore, we streamlined the protein biotinylation protocol by constructing a single plasmid expression system that ensures high level of expression and solubility for each of the target protein bearing the biotin-tag and the enzyme responsible for the in vivo biotinylation reaction. Both chromatographic schemes resulted in a high yield of pure proteins in their native form.


Assuntos
Avidina , Biotina , Cromatografia de Afinidade/métodos , Cromatografia/métodos , Proteínas/isolamento & purificação , Biotinilação , DNA Ligase Dependente de ATP/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Endonucleases Flap/isolamento & purificação , Humanos , Plasmídeos , Antígeno Nuclear de Célula em Proliferação , Proteínas/genética , Proteína SUMO-1
3.
Methods Mol Biol ; 1983: 207-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31087300

RESUMO

Cellular proteins are modified by lysine acetylation wherein an acetyltransferase transfers an acetyl group from acetyl co enzyme A onto the e-amino group of lysine residues. This modification is extremely dynamic and can be reversed by a deacetylase that removes the acetyl group. Addition of acetyl group to the lysine residue neutralizes its positive charge, thereby functioning as a molecular switch in regulating the enzymatic functions of the protein, its stability, and it cellular localization. Since this modification is extremely dynamic within the cell, biochemical studies characterizing changes in protein function are imperative to understand how this modification alters protein function in a specific cellular pathway. This unit describes in detail expression and purification of a recombinant nuclease and acetyltransferase, in vitro acetylation of the recombinant protein and biochemical assays to study the changes in enzymatic activity of the in vitro acetylated nuclease.


Assuntos
Endonucleases Flap/metabolismo , Lisina/metabolismo , Acetilação , DNA/metabolismo , Ensaios Enzimáticos/métodos , Endonucleases Flap/isolamento & purificação , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/isolamento & purificação , Fatores de Transcrição de p300-CBP/metabolismo
4.
Nat Commun ; 10(1): 2104, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068591

RESUMO

Protein-induced fluorescence enhancement (PIFE) is a popular tool for characterizing protein-DNA interactions. PIFE has been explained by an increase in local viscosity due to the presence of the protein residues. This explanation, however, denies the opposite effect of fluorescence quenching. This work offers a perspective for understanding PIFE mechanism and reports the observation of a phenomenon that we name protein-induced fluorescence quenching (PIFQ), which exhibits an opposite effect to PIFE. A detailed characterization of these two fluorescence modulations reveals that the initial fluorescence state of the labeled mediator (DNA) determines whether this mediator-conjugated dye undergoes PIFE or PIFQ upon protein binding. This key role of the mediator DNA provides a protocol for the experimental design to obtain either PIFQ or PIFE, on-demand. This makes the arbitrary nature of the current experimental design obsolete, allowing for proper integration of both PIFE and PIFQ with existing bulk and single-molecule fluorescence techniques.


Assuntos
DNA/metabolismo , Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Endonucleases Flap/química , Endonucleases Flap/isolamento & purificação , Endonucleases Flap/metabolismo , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Coloração e Rotulagem , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
5.
Nucleic Acids Res ; 38(21): 7611-25, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20660481

RESUMO

The two endonucleases, Rad27 (yeast Fen1) and Dna2, jointly participate in the processing of Okazaki fragments in yeasts. Mus81-Mms4 is a structure-specific endonuclease that can resolve stalled replication forks as well as toxic recombination intermediates. In this study, we show that Mus81-Mms4 can suppress dna2 mutational defects by virtue of its functional and physical interaction with Rad27. Mus81-Mms4 stimulated Rad27 activity significantly, accounting for its ability to restore the growth defects caused by the dna2 mutation. Interestingly, Rad27 stimulated the rate of Mus81-Mms4 catalyzed cleavage of various substrates, including regressed replication fork substrates. The ability of Rad27 to stimulate Mus81-Mms4 did not depend on the catalytic activity of Rad27, but required the C-terminal 64 amino acid fragment of Rad27. This indicates that the stimulation was mediated by a specific protein-protein interaction between the two proteins. Our in vitro data indicate that Mus81-Mms4 and Rad27 act together during DNA replication and resolve various structures that can impede normal DNA replication. This conclusion was further strengthened by the fact that rad27 mus81 or rad27 mms4 double mutants were synergistically lethal. We discuss the significance of the interactions between Rad27, Dna2 and Mus81-Mms4 in context of DNA replication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Endonucleases/genética , Endonucleases/isolamento & purificação , Endonucleases Flap/química , Endonucleases Flap/genética , Endonucleases Flap/isolamento & purificação , Genes Letais , Cinética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
6.
Nucleic Acids Res ; 36(14): 4699-707, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18628298

RESUMO

Small looped mispairs are corrected by DNA mismatch repair. In addition, a distinct process called large loop repair (LLR) corrects heteroduplexes up to several hundred nucleotides in bacteria, yeast and human cells, and in cell-free extracts. Only some LLR protein components are known, however. Previous studies with neutralizing antibodies suggested a role for yeast DNA polymerase delta (Pol delta), RFC and PCNA in LLR repair synthesis. In the current study, biochemical fractionation studies identified FEN1 (Rad27) as another required LLR component. In the presence of purified FEN1, Pol delta, RFC and PCNA, repair occurred on heteroduplexes with loops ranging from 8 to 216 nt. Repair utilized a 5' nick, with correction directed to the nicked strand, irrespective of which strand contained the loop. In contrast, repair of a G/T mismatch occurred at low levels, suggesting specificity of the reconstituted system for looped mispairs. The presence of RPA enhanced reactivity on some looped substrates, but RPA was not required for activity. Although additional LLR factors remain to be identified, the excision and resynthesis steps of LLR from a 5' nick can be reconstituted in a purified system with FEN1 and Pol delta, together with PCNA and its loader RFC.


Assuntos
Reparo do DNA , Endonucleases Flap/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Extratos Celulares , Núcleo Celular/metabolismo , DNA Polimerase III/metabolismo , Endonucleases Flap/análise , Endonucleases Flap/isolamento & purificação , Ácidos Nucleicos Heteroduplexes/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
7.
Artigo em Inglês | MEDLINE | ID: mdl-18097100

RESUMO

Flap endonuclease 1 (FEN1) is a structure-specific nuclease that removes the RNA/DNA primer associated with Okazaki fragments in DNA replication. Here, crystals of the complex between the catalytic domain of human FEN1 and a DNA product have been obtained. For efficient crystallization screening, a DNA-protein complex crystallization screening (DPCS) kit was designed based on commercial crystallization kits. The crystal was found to belong to space group P2(1), with unit-cell parameters a = 61.0, b = 101.3, c = 106.4 A, beta = 106.4 degrees. The asymmetric unit is predicted to contain two complexes in the crystallographic asymmetric unit. A diffraction data set was collected to a resolution of 2.75 A.


Assuntos
DNA/metabolismo , Endonucleases Flap/química , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/isolamento & purificação , Endonucleases Flap/isolamento & purificação , Endonucleases Flap/metabolismo , Humanos , Difração de Raios X
8.
Biochim Biophys Acta ; 1770(4): 527-42, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17188431

RESUMO

We purified and characterized previously from Podospora anserina mitochondria an endonuclease, active on single-stranded, double-stranded and flap DNA, with RNAse H activity, named P49 according to the major 49 kDa band observed on SDS-PAGE. Edman sequencing allowed us to identify the corresponding gene called nuc49. Here we report the properties of the (His)-tagged NUC49 protein expressed in E. coli. We show that this protein does exhibit an endonuclease activity on plasmid DNA, circular recessed and flap M13 substrate with short protruding single strand. However, in contrast to the mt endonuclease purified fraction it does not present RNase H activity and does not cleave linear flap substrate. The activity differences between the protein expressed in E. coli and the mitochondrial endonuclease fraction previously described are discussed. NUC49 presents a strong homology with the S. pombe CDB4 curved DNA binding protein which belongs to a large family including the human cell cycle protein PA2G4 and is able to bind curved DNA. The results constitute the first description of a mitochondrial endonuclease activity associated to this family of proliferation associated homologous proteins. The function of this endonuclease either in recombination, repair or mt DNA rearrangements remains to be determined.


Assuntos
Proteínas de Ligação a DNA/química , Endonucleases Flap/química , Proteínas Fúngicas/química , Mitocôndrias/enzimologia , Podospora/enzimologia , Sequência de Aminoácidos , Bacteriófago M13/metabolismo , Sequência de Bases , Cátions/química , DNA Circular/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Endonucleases Flap/genética , Endonucleases Flap/isolamento & purificação , Endonucleases Flap/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Peso Molecular , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Especificidade por Substrato
9.
Plant Cell Physiol ; 46(5): 699-715, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15792960

RESUMO

We have cloned a new member of the RAD2/XPG nuclease family, OsGEN-L (OsGEN-like), from rice (Oryza sativa L.). OsGEN-L possesses two domains, the N- and I-regions, that are conserved in the RAD2/XPG nuclease family. Database searches and phylogenetic analyses revealed that OsGEN-L belongs to class 4 of the RAD2/XPG nuclease family, and OsGEN-L homologs were found in animals and higher plants. To elucidate the function of OsGEN-L, we generated rice OsGEN-L-RNAi transgenic plants in which OsGEN-L expression was silenced. Most of the OsGEN-L-RNAi plants displayed low fertility, and some of them were male-sterile. OsGEN-L-RNAi plants lacked mature pollen, resulting from a defect in early microspore development. A OsGEN-L-green fluorescent protein (GFP) fusion protein was localized in the nucleus, and the OsGEN-L promoter was specifically active in the anthers. Furthermore, a recombinant OsGEN-L protein possessed flap endonuclease activity and both single-stranded and double-stranded DNA-binding activities. Our results suggest that OsGEN-L plays an essential role in DNA metabolism required for early microspore development in rice.


Assuntos
Desoxirribonucleases/metabolismo , Endonucleases Flap/genética , Inativação Gênica/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/isolamento & purificação , Endonucleases Flap/isolamento & purificação , Endonucleases Flap/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodução/genética , Ribonucleases/genética , Ribonucleases/isolamento & purificação , Ribonucleases/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
10.
Biochemistry ; 43(35): 11283-94, 2004 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-15366938

RESUMO

The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.


Assuntos
Cloroplastos/enzimologia , Endonucleases Flap/química , Endonucleases Flap/metabolismo , Triticum/enzimologia , Catálise , DNA de Plantas/química , DNA de Plantas/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Exonucleases/química , Exonucleases/metabolismo , Endonucleases Flap/isolamento & purificação , Hidrólise , Cinética , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
11.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 9): 1674-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15333952

RESUMO

Crystallization of protein and protein complexes is a multi-parametric problem that involves the investigation of a vast number of physical and chemical conditions. The buffers, salts and additives used to prepare the protein will be present in every crystallization condition. It is imperative that these conditions be defined prior to crystal screening since they will have a ubiquitous involvement in the crystal-growth experiments. This study involves the crystallization and preliminary analysis of the flap endonuclease-1 (FEN-1) DNA-repair enzyme from the crenarchaeal organism Aeropyrum pernix (Ape). Ape FEN-1 protein in a standard chromatography buffer had only a modest solubility and minimal success in crystallization trials. Using an ion/pH solubility screen, it was possible to dramatically increase the maximum solubility of the protein. The solubility-optimized protein produced large diffraction-quality crystals under multiple conditions in which the non-optimized protein produced only precipitate. Only minor adjustments of the conditions were required to produce single diffraction-quality crystals. The native Ape FEN-1 crystals diffract to 1.4 A resolution and belong to space group P6(1), with unit-cell parameters a = b = 92.8, c = 80.9 A, alpha = beta = 90, gamma = 120 degrees.


Assuntos
Aeropyrum/enzimologia , Endonucleases Flap/química , Fenômenos Químicos , Físico-Química , Cristalização , Cristalografia por Raios X , Interpretação Estatística de Dados , Escherichia coli/metabolismo , Endonucleases Flap/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...